
-Ri82 679 THE AUTOMATIC SYNTHESIS OF COMPUTER PROGRAMMING(U) j/i
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE Z MANNA
3e SEP 8b RFOSR-TR-87-e921 RFOSR-85-8283

UNCLASSi F ED F/G 12/5 NI



a .LL. 32 J
Lo

U ~' H +~RHf,,O(UTK)N 't CHAR'

- ~ -. V *W ~ U '~ ~~ %



SEC.JRITY CLASSIFICATION OF THIS !AGE When Dats Entered) OCZ
READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TTLE .and Subt-l) 5. TYPE OF REPORT & PERIOD COVERED

THE AUTOMATIC SYNTHESIS OF COMPUTER PROGRAMMING Final scientific report
10/1/1985 - 9/30/1986

6. PERFORMING ORG. REPORT NUMBER

7 AUTHORISI____________________

8 CONTRACT OR GRANT NUMBER(%)

Prof. Zohar Manna AFOSR-85-0383

, PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

0) Department of Computer Science AREA & WORK UNIT NUMBERS

1% Stanford University 61102F 2304 A3
(.O Stanford, CA 94305 12. REPORT DATE 13. NO. OF PAGES

CONTROLLING OFFICE NAME AND ADDRESS rPA
United States Air Force I
Air Force Office of Scientific Research 15 SECURITY CLASS. (of thic reort)

Bldg. 410, Bolling Air Force Bases, Wash. DC 20332%-" unclassified
MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

~-~-> ~ \ 115s. DECLASSIFICATION /DOWNGRADING
%C" & SCHEDULE

*' DISTRIBUTION STATEMENT (of this report)

Approved for public release: distribution unlimited

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report D TC
Capt. John Thomas JUL30 QW

18 SUPPLEMENTARY NOTES

D
19 KEY WORDS Continue on reverse side if necessary and identify by block number)

i%.

20, ABSTRACT (Contnue on reverse side of necessary and identify by block number)

Research on this effort was concentrated on the following topics: Special
relations in automated deduction, binary-search algorithms, a theory of plans,
deductive synthesis of dataflow networks, and temporal theorum proving. Two
students received Ph.D.'s while conducting resesrch supported by this effort.
Titles of several relevant papers produced during this grant include "Rrowards
deductive synthesis of data-flow networks, '.Non-clausal logic programming,"
"One origin of the binary-search paradigm,'" and 7'How to clear a block: a theory
of plans." - U,

DD , JAN731473 -
EDITION OF I NOV 6S IS OUSOLETE SECURITY CLASSIFICATION OF TO ISPAd When Data, k.

87 7 28 374



AFOSR-'T - 87-0921

THE AUTOMATIC SYNTHESIS OF COMPUTER PROGRAMMING

by

Zoliar Manna
Professor of Computer Science

Stanford University Stanford, CA 94305

Final Scientific Report:
Air Force Office of Scientific Research

Grant AFOSR-85-0383
Oct. 1, 1985 - Sept. 30, 1986

SUMMARY

Our research was concentrated on the following topics:

* Special Relations in Automated Deduction (Manna and Waldinger [86])

Theorem provers have exhibited supjer-human abilities in limited, obscure subject domains
but seem least competent in areas in which human intuition is best developed. One reason for this
is that an axiomatic formalization requires us to state explicitly facts that a person dealing in a
familiar subject would consider too obvious to mention; the proof must take each, f .nese facts into
account explicitly. A person who is easily able to construct an argument inforfIa ly may be too
swamped in detail to understand, let alone produce, the corresponding formal proof. A continuing
effort in our research is to make formal theorem proving more closely resemble intuitive reasoning.
One case in point is our treatment of special relations.

In most proofs of interest for program synthesis, certain mathematical relations, such as equal-
ity and orderings, present special difficulties. These relations occur frequently in specifications and
in derivation of proofs. If their properties are represented axiomatically, proofs become length..
difficult to understand, and even more difficult to produce or discover automatically. Axioms sum'h
as transitivity have many consequences. most of which are irrelevant to the proof; including thetil
produces an explosion in the search space.

For the equality relation, the approach that was adopted early on is to represent its propertic-
with rules of inference rather than axioms. In resolution systems, two rules of inference, paraniod.
ulation (Wos and Robinson) and E-resolution (Morris), were introduced. Proofs using these rid,,,
are shorter and clearer, because one application of a rule can replace the application of sevor' .
axioms. More importantly, we may drop the equality axioms from the clause set, thus eliminating -

their numerous consequevces from the search space............

We have discovered two rules of inference that play a role for an arbitrary relation analogoi,.
to that played by paramodulation and E-resolution for the equality relation. These rules appl. ii "c,Jes
sentences employing a full set of logical connectives, they need not be in the clause form re(qlr, U



by traditional resolution theorem provers. We intend both these rules to be incorporated into
theorem provers for program synthesis.

Employing the new special-relations rules yields the same benefits for an arbitrary relation
as using paramodulation and E-resolution yields for equality: proofs become shorter and more
comprehensible and the search space becomes sparser.

0 Binary-Search Algorithms (Manna and Waldinger [85a])

Some of the most efficient numerical algorithms rely on a binary-search strategy; according to
this strategy, the interval in which the desired output is sought is divided roughly in half at each
iteration. This technique is so useful that some authors (e.g., Dershowitz and Manna, and Smith
) have proposed that a general binary-search paradigm or schema be built into program synthesis
systems and then specialized as required for particular applications.

It is certainly valuable to store such schemata if they are of general application and difficult to
discover. This approach, however, leaves open the question of how schemata are discovered in the
first place. We have found that the concept of binary search appears quite naturally and easily in
the derivations of some numerical programs. The concept arises as the result of a single resolution
step, between a goal and itself, using our deductive-synthesis techniques (Manna and Waldinger
[SO]).

The programs we have produced in this way (e.g., real-number quotient and square root,
integer quotient and square root, and array searching) are quite simple and reasonably efficient,
but are bizarre in appearance and different from what we would have constructed by informal
means. For example, we have developed by our synthesis techniques the following real-number
square-root program sqrt(r, £):

ifmax(r, 1) < c
then 0

qrt(r, c) else if [sqrt(r, 2)+ < r
"qtrthen sqrt(r, 2) + c

" else sqrt(r, 2e).

The program tests if the error tolerance E is sufficiently large; if so, 0 is a close enough approxi-
mation. Otherwise, the program finds recursively an approximation within 2E less than the exact
square root of r. It then tries to refine this estimate, increasing it by e if the exact square root is
large enough and leaving it the same otherwise.

This program was surprising to us in that it doubles a number rather than halving it as th
classical binary-search program does. Nevertheless, if the repeated occurrences of the recursive call
.sqrt(r. 2c) are combined by common-subexpression elimination, this program is as efficient as the
familiar one and somewhat simpler.

* A Theory of Plans (Manna and Waldinger [85b])

Problems in commonsense and robot planning were approached by methods adapted from
our program-synthesis research; planning is regarded as an application of automated deduiction.
To support this approach, we introduced a variant of situational logic (Manna and Walding'r
[81]), called plan theory, in which plans are explicit objects. A machine-oriented deductive-ta ble ii
inference system is adapted to plan theory. Equations and equivalences of the theory are built 11t,

a iwiification algorithm for the system. Frame axioms are built into the resolution rule.

--- 12



Special attention was paid to the derivation of conditional and recursive plans. Inductive
proofs of theorems for even the simplest planning problems. such as clearing a block, have been
found to require challenging generalizations.I Deductive Synthesis of Dataflow Networks (Jonsson. Manna, and Waldinger [86j)

The synthesis of concurrent programs is much more complicated than the synthesis of se-
quential programs. In general, a concurrent program (toes not have a single input value and a
single output value. but receives several inputs and sends several outputs during its execution. If
we consider sequences of input and output values, then we can specify a concurrent program 1)v
giving a relation between the sequence of input values and the sequence of output values. ThisSspecification method is natural especially for networks of deterministic processes that communicate
asynchronously by sending messages over buffered channels. Deterministic data flow networks fall
into this category.

We have developed a method for the deductive synthesis of deterministic dataflow networks,
which are specified by a relation between sequences of input values and sequences of output values.

Our synthesis method consists of two stages. The first stage, the deductive-synthesis stage,
starts from a specification of the network. Using the deductive-tableau techniques of Manna and
Waldinger [801, a system of recursive equations is synthesized. This system can be regarded as
an applicative program that satisfies the specification for the network, but it does not directly
represent any structure or parallelism of a network. In the second stage, the system of recursive
equations is transformed into a dataflow network.

" The TABLOG rogramming Language (Malachi, Manna, and Waldinger [85], Malachi [86])

We have developed a new logic-programming language, TAB LOG (Malachi, Manna and Waldinger
[841). It is based on quantifier-free first-order logic that includes all the standard logical connec-
tives, such as equality, negation, and equivalence. Programs are nonclausal: they do not need to
be in Horn-clause form or any other normal form. They can compute either functions (as in LISP)or relations (as in PROLOG).

Two deduction rules are used for the execution of programs: nonclausal resolution (which
corresponds to case analysis) and equality replacement (which corresponds to replacement of equals
by equals). PROLOG programs are typically provided with cut annotations to allow their efficient
execution. Such annotations are not necessary in TABLOG, since implicit cuts are introduced durints

the computation. Lazy evaluation provides an elegant way to manipulate infinite data structre .

A powerful mechanism has been introduced supporting a hierarchical structure for TABLO(;l programs and permitting the reuse of code. A compiler for a virtual TABLOG machine, writtol ill

"rABLOG itself, is under development. It is expected that TABLOG programs will be executed ,1-
efficiently as their PROLOG counterparts, despite the additional features available to the prog m -i' €."mer.

* Temporal Theorem Proving (Abadi and Manna [851, Abadi [861)

The concept of time occupies a central place in our understanding of computation. We often
0V . 0 analyze computations as phenomena that occur over time, both formally and informally. l)ir,(t

references to temporal notions can be avoided in some arguments about certain classes of system .
such as functional programs. However, processes that interact with an environment or with ot ih,
processes are most naturally described in frameworks where time appears as an important explhit

notion.

Ell.



When classical logic serves as the framework to describe computations. time instants may be
regarded as objects and represented as terms. An alternative is to put the concept of time at the
core of a logic. The modal logics extend classical logic with modal operators to denote adverbs
such as "necessarily" and "probably-: for a temporal theory of computation, the appropriate modal
operators represent notions like -'next," "always," and "eventually." Such a temporal logic may
serve as an elegant and practical framework to reason about complex systems such as multiprocess
programs.

In the last few years. temporal logic has beea applied in the specification, verification, and
synthesis of concurrent systems, as well as in the synthesis of robot plans and in the verification
of hardware devices.

Many important properties of computation (e.g., termination, deadlock freedom, fairness)
can be expressed directly and concisely in the language of temporal logic. This accounts for tile
convenience of temporal logic as a specification tool. Expressiveness does not always suffice, though.
Some of the applications we mentioned involve a considerable deductive component. For example,
the verification of a program typically includes proofs within temporal logic.

In our research, we have developed a novel proof system for temporal logic. The proof system is
based on nonclausal resolution, a classical-logic method, and gives a special treatment to quantifiers
and modal operators. We have explored soundness and completeness issues for this system and
other related systems. In particular, we proved that a simple extension of the resolution system
is as powerful as Peano Arithmetic. We also showed how to provide analogous resolution systems
for other useful modal logics, such as the modal logics of knowledge and belief.

We have applied our resolution system to program verification. We have investigated the
possibility that temporal logic would serve as a programming language and that a temporal-
resolution theorem prover would interpret programs in this language.

e Logic: The Calculus of Computer Science

The research papers in which we have presented the deductive approach to program synthesis
has been addressed to the usual academic readers of the scholarly journals. In an effort to make this
work accessible to a wider audience, including computer science undergraduates and programmers.
we have developed a more elementary treatment in the form of a two-volume book, The Logical
Basis for (omputer Programming, Addison-Wesley (Manna and Waldinger [85c]).

This book requires no computer programming and no mathematics other than an intuitive
understanding of sets, relations, functions, and numbers; the level of exposition is elementary.
Nevertheless. the text presents some novel research results, including

" theories of strings, trees, lists, finite sets and bags, which are particularly well suited to
theorem-proving and program-synthesis applications;

* formalizations of parsing, infinite sequences, expressions, substitutions, and unification:

" a non-lausal version of skolemization;

* a treatment of mathematical induction in the deductive-tableau framework.



PUBLICATIONS

" Abadi. A. [86]

Temporal Theorem Proving. Ph.D. thesis (supervised by Z. Manna). ('onputer Science
Departmerrt. Stanford University, Stanford, CA. 1986.

" Abadi. A.. and Z. Manna [85]

Nonclausal temporal deduction. Proceedings of the Logic of Programs Conference, Brook-
lyn, NY, Lecture Notes in Computer Science 193. Springer-Verlag, June 1985. pp. 1-15.

* Jonsson, B., Z. Manna, and R. Waldinger [86]

Towards deductive synthesis of data-flow networks. First Symposium on Logic of Com-
puter Science, Cambridge, MA, June 1986, pp. 26-37.

* Malachi, Y. [861

Nonclausal Logic Programming, Ph.D. thesis (supervised by Z. Manna), Computer Science
Department, Stanford University, Stanford, CA, 1986.

Malachi, Y., Z. Manna, and R. Waldinger [841

TABLOG: The deductive-tableau programming language, ACM Symposium on LISP and
Functional Pr-ogramming, Austin, TX, August 1984, pp. 323-330.

• Malachi, Y., Z. Manna, and R. Waldinger [851

TABLOG: Functional and relational programming in one framework, IEEE Software, Vol.
2, No. 1 (January 1986), pp. 75-76 (invited abstract).

Manna, Z., and R. Waldinger [80]

A deductive approach to program synthesis. ACAI Transactions on Programming Lan-
guages and Systems, Vol. 2, No. 1 (January 1980), pp. 90-121.

Manna, Z., and R. Waldinger [81]

Probiematic features of programming languages: A situational-calculus approach, Acta
Informatica, Vol. 16, 1981, pp. 371-426.

* Manna, Z., and R. Waldinger [85a]

The origin of the binary-search paradigm, 9th International Joint Conference on Artificial
Intelligence, Los Angeles, CA, August 1985, pp. 222-224. Also to appear in Science of
Computer Programming.

* Manna,.Z., and R. Waldinger [85b]

How to clear a block: A theory of plans, in Reasoning About Actions and Plans: Pro-
ceedings of the 1986 Workshop, Timberline, Oregon, July 1986, Morgan and Kaufmann.
Also to appear in the Journal of Automated Reasoning, 1987.

* Manna, Z.. and R. Waldingcr [85c]





The Logical Bas~is for Computer Programming, Addison-Aeslely, Reading, MA.

Volume 1: Deductive Reasoning (19M5).

Volume 2: Deductive Techniques (to appear).

*Manna. Z.. and R. XWaldinger [86]

Special relat' .n automated deduction, Journal of the ACM, Vol. 33, No. I (January
1986). pp. 1-6

Papers marked by a * were partially supported by the AFOSR grant. Copies of four
of them are enclosed.



-'V ~ "W W"'TW~ ~3W~W"~U. ~.


